수요일, 1월 8, 2025

목성은 이질적인 것으로 밝혀졌습니다 – 야금술은 행성의 기원에 대한 새로운 단서를 보여줍니다

날짜:

목성의 남북 동적 온대에서 소용돌이 치는 구름

목성의 역동적인 온대 북부 벨트에서 소용돌이치는 수많은 구름이 NASA의 Juno 우주선에서 촬영된 이 이미지에서 포착되었습니다. 출처: NASA/JPL-Caltech/SwRI/MSSS에서 제공한 이미지를 기반으로 Gerald Eichstädt 및 Sean Doran(CC BY-NC-SA)이 개선한 이미지

새로운 연구에서 발견[{” attribute=””>Jupiter’s gaseous envelope doesn’t have a homogeneous distribution and its metallicity reveals clues about its origin.

An international team of astronomers has found that Jupiter’s gaseous envelope doesn’t have a homogeneous distribution. The inner part has more metals than the outer parts, adding up to a total of between 11 and 30 earth masses, making up 3-9% of Jupiter’s total mass. This is a high enough metallicity to conclude that kilometer-sized bodies—planetesimals—must have played a role in Jupiter’s formation. The research was led by Yamila Miguel (SRON/Leiden Observatory) and published on June 8, 2022, in the journal Astronomy & Astrophysics.

Jupiter, a gas giant, is the fifth planet from the Sun, orbiting between Mars and Saturn. It is by far the largest and most massive planet in our Solar System,ith a mass more than 317 times that of Earth.

When NASA’s Juno space mission arrived at Jupiter in 2016, we caught a glimpse of the remarkable beauty of the biggest planet in our Solar System. Besides the famous Great Red Spot, Jupiter turns out to be littered with hurricanes, almost giving it the appearance and mystique of a Van Gogh painting. The planet’s envelope underneath the thin visible layer however, is not immediately apparent. Still, Juno is able to paint us a picture by sensing the gravitational pull above different locations on Jupiter. This gives astronomers information about the composition of the interior, which is not like what we see in the surface.

An international team of astronomers, led by Yamila Miguel (SRON/Leiden Observatory), now found that the gaseous envelope is not as homogenous and well-mixed as previously thought. Instead, it has a higher contraction of “metals”—elements heavier than hydrogen and helium—towards the center of the planet. To reach their conclusions, the team built a number of theoretical models that adhere to the observational constraints measured by Juno.

Deep Jet Streams in Jupiter's Atmosphere

This view of Jupiter’s turbulent atmosphere from NASA’s Juno spacecraft includes several of the planet’s southern jet streams. Using data from Juno’s instruments, scientists discovered that Jupiter’s powerful atmospheric jet streams extend far deeper than previously imagined. Evidence from Juno shows the jet streams and belts penetrate about 1,800 miles (3,000 kilometers) down into the planet. Credit: Image data: NASA/JPL-Caltech/SwRI/MSSSImage processing by Tanya Oleksuik © CC NC SA

The team studied the distribution of metals because it gives them information about how Jupiter was formed. The metals turn out to be not distributed homogeneously across the envelope, with more in the inner part than in the outer parts. The total adds up to between 11 and 30 earth masses worth of metals. Miguel: “There are two mechanisms for a gas giant like Jupiter to acquire metals during its formation: through the accretion of small pebbles or larger planetesimals. We know that once a baby planet is big enough, it starts pushing out pebbles. The richness of metals inside Jupiter that we see now is impossible to achieve before that. So we can exclude the scenario with only pebbles as solids during Jupiter’s formation. Planetesimals are too big to be blocked, so they must have played a role.”

The finding that the inner part of the envelope has more heavy elements than the outer part, means that the abundance decreases outward with a gradient, instead there being a homogeneous mixing across the envelope. “Earlier we thought that Jupiter has convection, like boiling water, making it completely mixed,” says Miguel. “But our finding shows differently.”

Reference: “Jupiter’s inhomogeneous envelope” by Y. Miguel, M. Bazot, T. Guillot, S. Howard, E. Galanti, Y. Kaspi, W. B. Hubbard, B. Militzer, R. Helled, S. K. Atreya, J. E. P. Connerney, D. Durante, L. Kulowski, J. I. Lunine, D. Stevenson and S. Bolton, 27 January 2022, Astronomy & Astrophysics.
DOI: 10.1051/0004-6361/202243207

관련 기사

Bit Octopus, 한글 지원 및 독특한 기술로 국내시장에서 큰 인기를 끌며 거래의 새로운 시대를 선도하다

중국 홍콩 — 글로벌 핀테크 시장에서 Bit Octopus가 빠른 속도로 한국 금융 무대에 등장하고 있습니다! 업계 최초로 역전...

Battletoads/Double Dragon이 Nintendo의 Switch Online 라이브러리에 진출하고 있습니다.

NES 및 SNES 콘솔 시대에 자랐다면 이 게임이 이후 최고의 비디오 게임 중 하나라는 사실을 알고 기뻐할 것입니다....

White Fragility 저자 Robin DiAngelo에 대한 표절 고소가 기각되었습니다. 서적

지난달 'White Fragility'를 비롯해 인종차별에 관한 여러 책을 쓴 로빈 디안젤로(Robin DiAngelo)를 대상으로 제기된 표절 고소장이 기각됐다.DiAngelo의 2004년...

2024 한국영화제, 우정을 다룬 영화 5편

크리스토퍼 퍼넬(Christopher Purnell) - Philstar.com2024년 9월 18일 | 오후 7시 14분 마닐라, 필리핀 - 올해 한국영화제는 한국과 필리핀...