화요일, 1월 7, 2025

천문학자들은 존재해서는 안 되는 “금지된” 외계 행성을 발견했습니다.

날짜:

작은 적색 왜성 주위를 공전하는 거대 가스 거대 행성

TOI-5205라고 불리는 작은 적색 왜성 주위를 공전하는 거대 가스 거대 행성에 대한 예술가의 개념. 출처: 사진: Catherine Cain, Carnegie Institution for Science 제공

작은 별 주위를 공전하는 “금지된” 행성이 가스 거성 형성 이론에 도전하다

행성 형성에 대한 우리의 현재 이해를 바탕으로 TOI-5205b는 존재하지 않아야 합니다. 그것은 “금지된” 행성입니다.

천문학자 팀이 TOI-5205라고 불리는 작은 적색 왜성 주위를 공전하는 거대 가스 거대 행성이 있는 특이한 행성계를 발견했습니다. 그들의 발견은 행성 형성에 대한 고대의 생각에 도전합니다. Carnegie Institution for Science의 Shubham Kanodia가 이끄는 연구원들은 연구 결과를 천문 저널.

태양보다 작고 온도가 낮은 M 왜성은 우리 우주에서 가장 흔한 별입니다.[{” attribute=””>Milky Way galaxy. Due to their small size, these stars tend to be about half as hot as the Sun and much redder. They have very low luminosities, but extremely long lifespans. Although red dwarfs host more planets, on average, than other, more massive types of stars, their formation histories make them unlikely candidates to host gas giants.

TOI-5205 Hosts Gas Giant Planet

Artist’s conception of a large gas giant planet orbiting a small red dwarf star called TOI-5205. Until now no gas giant has been found in a planetary system around a low-mass M dwarf like TOI-5205. Credit: Image by Katherine Cain, courtesy of the Carnegie Institution for Science

The newly discovered planet—TOI 5205b—was first identified as a potential candidate by NASA’s Transiting Exoplanet Survey Satellite (TESS). Kanodia’s team, which included Carnegie’s Anjali Piette, Alan Boss, Johanna Teske, and John Chambers, then confirmed its planetary nature and characterized it using a variety of ground-based instruments and facilities.

“The host star, TOI-5205, is just about four times the size of Jupiter, yet it has somehow managed to form a Jupiter-sized planet, which is quite surprising!” exclaimed Kanodia, who specializes in studying these stars, which comprise nearly three-quarters of our galaxy yet can’t be seen with the naked eye. He also wrote a blog post about the discovery.

A small number of gas giants have been discovered orbiting older M dwarf stars. But until now no gas giant has been found in a planetary system around a low-mass M dwarf like TOI-5205. To grasp the size comparison here, a Jupiter-like planet orbiting a Sun-like star could be compared to a pea going around a grapefruit; for TOI-5205b, because the host star is so much smaller, it is more like a pea going around a lemon. In fact, when the Jupiter-mass TOI 5205b crosses in front of its host, it blocks about seven percent of its light—one of the largest known exoplanet transits.

TOI-5205 Size Comparison

A Jupiter-like planet orbiting a Sun-like star could be compared to a pea going around a grapefruit; for TOI-5205b, because the host star is so much smaller, it is more like a pea going around a lemon, said lead author Shubham Kanodia. Credit: Artwork by Katherine Cain is courtesy of the Carnegie Institution for Science

Planets are born in the rotating disk of gas and dust that surrounds young stars. The most commonly used theory of gas planet formation requires about 10 Earth masses of this rocky material to accumulate and form a massive rocky core, after which it rapidly sweeps up large amounts of gas from the neighboring regions of the disk to form the giant planet we see today.

The time frame in which this happens is crucial.

“TOI-5205b’s existence stretches what we know about the disks in which these planets are born,” Kanodia explained. “In the beginning, if there isn’t enough rocky material in the disk to form the initial core, then one cannot form a gas giant planet. And at the end, if the disk evaporates away before the massive core is formed, then one cannot form a gas giant planet. And yet TOI-5205b formed despite these guardrails. Based on our nominal current understanding of planet formation, TOI-5205b should not exist; it is a “forbidden” planet.”

The team demonstrated that the planet’s very large transit depth makes it extremely conducive for future observations with the recently launched JWST, which could shed some light on its atmosphere and offer some additional clues about the mystery of its formation.

Reference: “TOI-5205b: A Short-period Jovian Planet Transiting a Mid-M Dwarf” by Shubham Kanodia, Suvrath Mahadevan, Jessica Libby-Roberts, Gudmundur Stefansson, Caleb I. Cañas, Anjali A. A. Piette, Alan Boss, Johanna Teske, John Chambers, Greg Zeimann, Andrew Monson, Paul Robertson, Joe P. Ninan, Andrea S. J. Lin, Chad F. Bender, William D. Cochran, Scott A. Diddams, Arvind F. Gupta, Samuel Halverson, Suzanne Hawley, Henry A. Kobulnicky, Andrew J. Metcalf, Brock A. Parker, Luke Powers, Lawrence W. Ramsey, Arpita Roy, Christian Schwab, Tera N. Swaby, Ryan C. Terrien and John Wisniewski, 21 February 2023, The Astronomical Journal.
DOI: 10.3847/1538-3881/acabce

The TESS follow-up research was conducted using the Habitable-zone Planet Finder (HPF; Texas, US) and Low Resolution Spectrograph (LRS2; Texas, US) on the 10-m Hobby Eberly Telescope, the ARCTIC camera on the 3.5-m Apache Point Observatory (APO; New Mexico, US), the NN-Explore Exoplanet Stellar Speckle Imager (NESSI, Arizona, US) at the 3.5-m WIYN telescope, the 0.6-m Red Buttes Observatory (RBO, Wyoming, US), and the 0.3 m Three Hundred Millimeter Telescope (TMMT, Chile).

Other members of the research team were: Penn State University’s Suvrath Mahadevan, Jessica Libby-Roberts, Caleb Cañas (also of NASA Goddard Space Flight Center), Andrea Lin, Arvind Gupta, Luke Powers, and Lawrence Ramsey; Princeton University’s Gudmundur Stefansson; University of Texas Austin’s Greg Zeimann and William Cochran; University of Arizona’s Andrew Monson and Chad Bender; UC Irvine’s Paul Robertson; the Tata Institute of Fundamental Research’s Joe Ninan; University of Colorado Boulder’s Scott Diddams; the Jet Propulsion Laboratory’s Samuel Halverson; University of Washington’s Suzanne Hawley; University of Wyoming’s Henry Kobulnicky, Brock Parker, and Tera Swaby; the Air Force Research Laboratory’s Andrew Metcalf; the Space Telescope Science Institute’s Arpita Roy (also of Johns Hopkins University); Macquarie University’s Christian Schwab; Carleton College’s Ryan Terrien; and George Mason University’s John Wisniewski.

관련 기사

Bit Octopus, 한글 지원 및 독특한 기술로 국내시장에서 큰 인기를 끌며 거래의 새로운 시대를 선도하다

중국 홍콩 — 글로벌 핀테크 시장에서 Bit Octopus가 빠른 속도로 한국 금융 무대에 등장하고 있습니다! 업계 최초로 역전...

Battletoads/Double Dragon이 Nintendo의 Switch Online 라이브러리에 진출하고 있습니다.

NES 및 SNES 콘솔 시대에 자랐다면 이 게임이 이후 최고의 비디오 게임 중 하나라는 사실을 알고 기뻐할 것입니다....

White Fragility 저자 Robin DiAngelo에 대한 표절 고소가 기각되었습니다. 서적

지난달 'White Fragility'를 비롯해 인종차별에 관한 여러 책을 쓴 로빈 디안젤로(Robin DiAngelo)를 대상으로 제기된 표절 고소장이 기각됐다.DiAngelo의 2004년...

2024 한국영화제, 우정을 다룬 영화 5편

크리스토퍼 퍼넬(Christopher Purnell) - Philstar.com2024년 9월 18일 | 오후 7시 14분 마닐라, 필리핀 - 올해 한국영화제는 한국과 필리핀...