화요일, 11월 5, 2024

획기적인 새로운 암흑 물질 지도가 아인슈타인의 일반 상대성 이론을 검증합니다.

날짜:

연구원들은 아타카마 우주론 망원경을 사용하여 이 새로운 암흑 물질 지도를 만들었습니다. 주황색 영역은 더 많은 질량이 있는 곳을 보여줍니다. 적거나 전혀 없는 자홍색. 일반적인 특징은 수억 광년에 걸쳐 있습니다. 플랑크 위성이 측정한 우리 은하의 먼지에 의해 빛이 가려지는 부분을 보여주는 희끄무레한 띠는 더 깊은 시야를 제공합니다. 새로운 지도는 주로 우주 마이크로파 배경(CMB)의 빛을 배경 조명으로 사용하여 우리와 빅뱅 사이의 모든 것을 묘사합니다. “음영과 약간 비슷하지만 실루엣에 검은색이 있는 대신 질감과 암흑 물질 덩어리가 있습니다. 마치 빛이 매듭과 요철이 많은 패브릭 커튼을 통해 흐르는 것처럼 보입니다.”라고 Susan Staggs는 말했습니다. Henry D. Wolfe Smith 프린스턴 대학교 물리학과 교수. “유명한 파란색과 노란색 CMB 이미지는 약 130억 년 전의 한 시대에 우주가 어땠는지에 대한 스냅샷이며 이제 그 이후의 모든 시대에 대한 정보를 제공합니다.” 크레딧: ACT 협업

Atacama Cosmology Telescope Collaboration의 연구는 우주의 진화를 이해하는 데 큰 돌파구를 마련했습니다.

수천 년 동안 인간은 우주의 신비에 매료되었습니다.

우주의 기원을 상상했던 고대 철학자들과 달리 현대 우주론자들은 양적 도구를 사용하여 우주의 진화와 구조에 대한 통찰력을 얻습니다. 현대 우주론은 알버트 아인슈타인의 일반 상대성 이론이 발전한 20세기 초로 거슬러 올라갑니다.

이제 Atacama Cosmology Telescope (ACT) Collaboration의 연구원들이 일련의 논문을 그만큼[{” attribute=””>Astrophysical Journal featuring a groundbreaking new map of dark matter distributed across a quarter of the sky, extending deep into the cosmos, that confirms Einstein’s theory of how massive structures grow and bend light over the 14-billion-year life span of the universe.

The new map uses light from the cosmic microwave background (CMB) essentially as a backlight to silhouette all the matter between us and the Big Bang.

Atacama Cosmology Telescope

The Atacama Cosmology Telescope in Northern Chile, supported by the National Science Foundation, operated from 2007-2022. The project is led by Princeton University and the University of Pennsylvania — Director Suzanne Staggs at Princeton, Deputy Director Mark Devlin at Penn — with 160 collaborators at 47 institutions. Credit: Mark Devlin, Deputy Director of the Atacama Cosmology Telescope and the Reese Flower Professor of Astronomy at the University of Pennsylvania

“It’s a bit like silhouetting, but instead of just having black in the silhouette, you have texture and lumps of dark matter, as if the light were streaming through a fabric curtain that had lots of knots and bumps in it,” said Suzanne Staggs, director of ACT and Henry DeWolf Smyth Professor of Physics at Princeton University. “The famous blue and yellow CMB image [from 2003] 약 130억 년 전의 한 시대에 우주가 어땠는지에 대한 스냅샷이며 이제 그 이후로 지나간 모든 시대에 대한 정보를 제공합니다.”

분석을 주도하는 물리학 및 천체물리과학 교수인 조 던클리(Joe Dunkley)는 ACT에 “보이지 않는 것을 볼 수 있고 눈에 보이는 별이 빛나는 은하를 지탱하는 암흑 물질의 비계를 밝힐 수 있다는 것은 흥분된다”고 말했다. “이 새로운 이미지에서 우리는 은하계를 둘러싸고 연결하는 보이지 않는 암흑 물질의 우주 웹을 직접 볼 수 있습니다.”

“일반적으로 천문학자들은 빛만 측정할 수 있으므로 우리는 은하가 우주 전체에 어떻게 분포되어 있는지 봅니다. 이러한 관측은 질량 분포를 보여주므로 기본적으로 암흑 물질이 우리 우주 전체에 어떻게 분포되어 있는지 보여줍니다.”라고 Princeton Charles A의 David Spergel은 말했습니다. .

ACT 코스모스 인포그래픽

Atacama Cosmology Telescope 협업의 연구는 전체 하늘의 1/4에 걸쳐 우주 깊숙이 도달하는 획기적인 새로운 암흑 물질 지도에서 절정에 달했습니다. 그 결과는 한 세기 이상 우주론의 표준 모델의 기초가 된 아인슈타인의 일반 상대성 이론을 뒷받침하고 암흑 물질을 신비화하는 새로운 방법을 제공합니다. 크레딧: Lucy Reading-Ikkanda, 시몬스 재단

2013년 공저자 블레이크 셔윈(Blake Sherwin) 박사는 “우리는 하늘을 가로질러 보이지 않는 암흑 물질의 분포를 지도로 만들었고 이는 우리 이론에서 예측한 것과 정확히 일치한다”고 말했다. 프린스턴 대학을 졸업하고 케임브리지 대학의 우주론 교수로서 대규모 ACT 연구원 그룹을 이끌고 있습니다. “이것은 수십억 년 동안 우리 우주에서 구조가 어떻게 형성되었는지에 대한 이야기를 이해하고 있다는 놀라운 증거입니다.[{” attribute=””>Big Bang to today.’

He added: “Remarkably, 80% of the mass in the universe is invisible. By mapping the dark matter distribution across the sky to the largest distances, our ACT lensing measurements allow us to clearly see this invisible world.”

“When we proposed this experiment in 2003, we had no idea the full extent of information that could be extracted from our telescope,” said Mark Devlin, the Reese Flower Professor of Astronomy at the University of Pennsylvania and the deputy director of ACT, who was a Princeton postdoc from 1994-1995. “We owe this to the cleverness of the theorists, the many people who built new instruments to make our telescope more sensitive, and the new analysis techniques our team came up with.” This includes a sophisticated new model of ACT’s instrument noise by Princeton graduate student Zach Atkins.

Atacama Cosmology Telescope

Research by the Atacama Cosmology Telescope collaboration has culminated in a groundbreaking new map of dark matter distributed across a quarter of the entire sky, reaching deep into the cosmos. Findings provide further support to Einstein’s theory of general relativity, which has been the foundation of the standard model of cosmology for more than a century, and offer new methods to demystify dark matter. Credit: Image courtesy of Debra Kellner

Despite making up most of the universe, dark matter has been hard to detect because it doesn’t interact with light or other forms of electromagnetic radiation. As far as we know, dark matter only interacts with gravity.

To track it down, the more than 160 collaborators who have built and gathered data from the National Science Foundation’s Atacama Cosmology Telescope in the high Chilean Andes observed light emanating following the dawn of the universe’s formation, the Big Bang — when the universe was only 380,000 years old. Cosmologists often refer to this diffuse CMB light that fills our entire universe as the “baby picture of the universe.”

The team tracked how the gravitational pull of massive dark matter structures can warp the CMB on its 14-billion-year journey to us, just as antique, lumpy windows bend and distort what we can see through them.

“We’ve made a new mass map using distortions of light left over from the Big Bang,” said Mathew Madhavacheril, a 2016-2018 Princeton postdoc who is the lead author of one of the papers and an assistant professor in physics and astronomy at the University of Pennsylvania. “Remarkably, it provides measurements that show that both the ‘lumpiness’ of the universe, and the rate at which it is growing after 14 billion years of evolution, are just what you’d expect from our standard model of cosmology based on Einstein’s theory of gravity.”

Sherwin added, “Our results also provide new insights into an ongoing debate some have called ‘The Crisis in Cosmology.’” This “crisis” stems from recent measurements that use a different background light, one emitted from stars in galaxies rather than the CMB. These have produced results that suggest the dark matter was not lumpy enough under the standard model of cosmology and led to concerns that the model may be broken. However, the ACT team’s latest results precisely assessed that the vast lumps seen in this image are the exact right size.

“While earlier studies pointed to cracks in the standard cosmological model, our findings provide new reassurance that our fundamental theory of the universe holds true,” said Frank Qu, lead author of one of the papers and a Cambridge graduate student as well as a former Princeton visiting researcher.

“The CMB is famous already for its unparalleled measurements of the primordial state of the universe, so these lensing maps, describing its subsequent evolution, are almost an embarrassment of riches,” said Staggs, whose team built the detectors that gathered this data over the past five years. “We now have a second, very primordial map of the universe. Instead of a ‘crisis,’ I think we have an extraordinary opportunity to use these different data sets together. Our map includes all of the dark matter, going back to the Big Bang, and the other maps are looking back about 9 billion years, giving us a layer that is much closer to us. We can compare the two to learn about the growth of structures in the universe. I think is going to turn out to be really interesting. That the two approaches are getting different measurements is fascinating.”

ACT, which operated for 15 years, was decommissioned in September 2022. Nevertheless, more papers presenting results from the final set of observations are expected to be submitted soon, and the Simons Observatory will conduct future observations at the same site, with a new telescope slated to begin operations in 2024. This new instrument will be capable of mapping the sky almost 10 times faster than ACT.

Of the co-authors on the ACT team’s series of papers, 56 are or have been Princeton researchers. More than 20 scientists who were junior researchers on ACT while at Princeton are now faculty or staff scientists themselves. Lyman Page, Princeton’s James S. McDonnell Distinguished University Professor in Physics, was the former principal investigator of ACT.

This research will be presented at “Future Science with CMB x LSS,” a conference running from April 10-14 at Yukawa Institute for Theoretical Physics, Kyoto University. The pre-print articles highlighted here will appear on the open-access arXiv.org. They have been submitted to the Astrophysical Journal. This work was supported by the U.S. National Science Foundation (AST-0408698, AST-0965625 and AST-1440226 for the ACT project, as well as awards PHY-0355328, PHY-0855887 and PHY-1214379), Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation award. Team members at the University of Cambridge were supported by the European Research Council.

관련 기사

북한 yarshe igisasu kibujijwe kambukiranya imikabane

아하우예 이사나무, 로이터이브랑가 이이 응구루움완디치, 켈리 응이키코르와, BBC 뉴스이미노타 21 이라헤제Korea ya rukuru yarashe ikisasu ke misire...

런던한국영화제가 11월 1일부터 개막합니다! 영화 승리는 재치를 열어준다

제19회 런던한국영화제는 11월 1일부터 13일까지 영국 런던에서 개최된다. 개막작은 박범수 감독이 '승리'로 선정했다.주영한국문화원(감독 손승혜/이하...